Skip down to main content

HUMANE: a typology, method and roadmap for HUman-MAchine Networks

HUMANE: a typology, method and roadmap for HUman-MAchine Networks

Overview

Increasingly, activities in work and social life are conducted within human-machine networks, where collaboration involves many different actors; governments and organisations, individuals and machines such as smart devices, sensors and computing infrastructure. The targets of these networks can be for policy making, commercial innovation, education, improved quality of life, and information exchange or resource organisation. As networks become more complex and include more connections between humans and machines, so the characteristics of those networks become important in determining the effectiveness and successful evolution of the collaborations which they support. Emerging challenges are: understanding the processes necessary for developing and maintaining human-machine networks such that they are able to deliver their intended outcomes; and applying this knowledge to support emerging networks in public, commercial and civil domains to more readily achieve key European goals. In HUMANE we will develop a typology of human-machine networks focused on characteristics of relationships between networked humans and machines such as trust, motivation, reputation, responsibility, privacy and security. We will consider health indicators for networks and create prototype tools that can be exploited through a community of stakeholders to create and enrich human-machine networks. We will propose a roadmap and methodology for the evolution of such networks, appropriate to the needs of ICT developers, building on in-depth case studies taken from R&I projects relevant to the societal DAE pillars to form a supporting framework for future thinking and ICT policy-making in Europe. The project partners in HUMANE have wide and complementary experience in social sciences and ICT R&I, essential for bridging the technological, societal, industrial and human-centric components necessary to achieve improved understanding of emerging hyper-connected human-machine networks.

Support

This project is funded by the European Commission Horizon 2020 – Research and Innovation Framework Programme.

 

Key Information

Funder:
  • European Commission
  • Project dates:
    April 2015 - May 2017

    Videos and Podcasts

    Privacy Overview
    Oxford Internet Institute

    This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

    Strictly Necessary Cookies
    • moove_gdrp_popup -  a cookie that saves your preferences for cookie settings. Without this cookie, the screen offering you cookie options will appear on every page you visit.

    This cookie remains on your computer for 365 days, but you can adjust your preferences at any time by clicking on the "Cookie settings" link in the website footer.

    Please note that if you visit the Oxford University website, any cookies you accept there will appear on our site here too, this being a subdomain. To control them, you must change your cookie preferences on the main University website.

    Google Analytics

    This website uses Google Tags and Google Analytics to collect anonymised information such as the number of visitors to the site, and the most popular pages. Keeping these cookies enabled helps the OII improve our website.

    Enabling this option will allow cookies from:

    • Google Analytics - tracking visits to the ox.ac.uk and oii.ox.ac.uk domains

    These cookies will remain on your website for 365 days, but you can edit your cookie preferences at any time via the "Cookie Settings" button in the website footer.