Skip down to main content

Publication: Rapid rise and decay in petition signing

Published on
17 Aug 2017
Written by
Scott A. Hale

Our journal article entitled, “Rapid rise and decay in petition signing” has been published in EPJ Data Science.

Contemporary collective action, much of which involves social media and other Internet-based platforms, leaves a digital imprint which may be harvested to better understand the dynamics of mobilization. Petition signing is an example of collective action which has gained in popularity with rising use of social media and provides such data for the whole population of petition signatories for a given platform. This paper tracks the growth curves of all 20,000 petitions to the UK government petitions website (http://epetitions.direct.gov.uk) and 1,800 petitions to the US White House site (https://petitions.whitehouse.gov), analyzing the rate of growth and outreach mechanism. Previous research has suggested the importance of the first day to the ultimate success of a petition, but has not examined early growth within that day, made possible here through hourly resolution in the data. The analysis shows that the vast majority of petitions do not achieve any measure of success; over 99 percent fail to get the 10,000 signatures required for an official response and only 0.1 percent attain the 100,000 required for a parliamentary debate (0.7 percent in the US). We analyze the data through a multiplicative process model framework to explain the heterogeneous growth of signatures at the population level. We define and measure an average outreach factor for petitions and show that it decays very fast (reducing to 0.1% after 10 hours in the UK and 30 hours in the US). After a day or two, a petition’s fate is virtually set. The findings challenge conventional analyses of collective action from economics and political science, where the production function has been assumed to follow an S-shaped curve.

The article is open-access and can be read freely on the publisher’s website: EPJ Data Science (2017) 6:20.

Related Topics:

Privacy Overview
Oxford Internet Institute

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookies
  • moove_gdrp_popup -  a cookie that saves your preferences for cookie settings. Without this cookie, the screen offering you cookie options will appear on every page you visit.

This cookie remains on your computer for 365 days, but you can adjust your preferences at any time by clicking on the "Cookie settings" link in the website footer.

Please note that if you visit the Oxford University website, any cookies you accept there will appear on our site here too, this being a subdomain. To control them, you must change your cookie preferences on the main University website.

Google Analytics

This website uses Google Tags and Google Analytics to collect anonymised information such as the number of visitors to the site, and the most popular pages. Keeping these cookies enabled helps the OII improve our website.

Enabling this option will allow cookies from:

  • Google Analytics - tracking visits to the ox.ac.uk and oii.ox.ac.uk domains

These cookies will remain on your website for 365 days, but you can edit your cookie preferences at any time via the "Cookie Settings" button in the website footer.